(本题满分14分已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.⑴求椭圆C的方程;⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;⑶在⑵的条件下,证明直线与轴相交于定点.
已知集合A=, B=,求: (1) (2)
已知点Pn(an,bn)都在直线L:y=2x+2上,P1为直线L与x轴的交点,数 列{an}成等差数列,公差为1(n∈N*)。 (I)求数列{an},{bn}的通项公式; (II)求证:(n≥3,n∈N*)。
已知函数. (1)若f(x)关于原点对称,求a的值; (2)在(1)下,解关于x的不等式.
(12分)已知等比数列{an}的前n项和为Sn="3" · 2n-3。 (1)求a1、a2的值及数列{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Tn。
(12分)若函数. (1)求函数f(x)的单调递增区间。 (2)求在区间[-3,4]上的值域