如图,已知椭圆到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点..(1)求此椭圆的方程及离心率;(2)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.
已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
已知椭圆经过点.(1)求椭圆的方程及其离心率;(2)过椭圆右焦点的直线(不经过点)与椭圆交于两点,当的平分线为 时,求直线的斜率.
一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设X为取得红球的个数.(1)求X的分布列;(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.
如图,在四棱锥中,底面是正方形,侧棱⊥底面 ,,是的中点,作交于点.(1)求证:平面;(2)求二面角的正弦值.