(选修4—1:几何证明选讲)已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长.
甲乙两车间生产同一种产品,各生产40个后,按产品合格与不合格进行统计,甲车间生产的产品合格数为36个,乙车间生产的产品合格数为24个.(1)根据以上数据完成列联表;
(2)试判断是否产品合格与生产车间是否有关?
已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围
我们已经学过了等比数列,你是否想过有没有等积数列呢?(1)类比“等比数列”给出“等积数列”的定义;(2)探索每一项都不为0等积数列的奇数项与偶数项各有什么特点。
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线的焦点。(1)求椭圆C的标准方程;(2)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若的值。
已知函数(1)当时,求函数的单调区间;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?