(本小题满分14分)已知椭圆C:的右焦点为F,右顶点为A,离心率为e,点满足条件.(Ⅰ)求m的值;(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记和的面积分别为,,若,求直线l的方程.
在锐角中,角A、B、C所对的边分别是a、b、c,为△ABC的外心. (1)若,求的值; (2)已知,,,求的值.
己知函数,且,, (Ⅰ)求的最大值与最小值; (Ⅱ)求的单调增区间.
设函数,若对任意,都有()恒成立. (1)求a的取值范围; (2)求证:对任意,.
有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法. (1)求n的值; (2)求随机变量ξ的概率分布列和数学期望.
在数列{an}中,,且, (Ⅰ)求的值; (Ⅱ)归纳的通项公式,并用数学归纳法证明.