(本小题满分12分)已知向量满足,且,令,(1)求(用表示);(2)当时,对任意的恒成立,求实数取值范围.
已知数列 a n 满足 a 1 = 1 2 =且 a n + 1 = a n - a n 2 ( n ∈ N * ) (1)证明: 1 ≤ a n a n + 1 ≤ 2 ( n ∈ N * ) ; (2)设数列 a n 2 的前 n 项和为 S n ,证明 1 2 ( n + 2 ) ≤ S n n ≤ 1 2 ( n + 1 ) ( n ∈ N * )
已知椭圆 x 2 2 + y 2 = 1 上两个不同的点 A , B 关于直线 y = m x + 1 2 对称.
(1)求实数 m 的取值范围; (2)求 △ A O B 面积的最大值( O 为坐标原点).
已知函数 f ( x ) = x 2 + a x + b ( a , b ∈ R ) ,记 M ( a , b ) 是 f ( x ) 在区间 - 1 , 1 上的最大值. (1)证明:当 a ≥ 2 时, M ( a , b ) ≥ 2 ; (2)当 a , b 满足 M ( a , b ) ≤ 2 ,求 a + b 的最大值.
如图,在三棱柱 A B C - A 1 B 1 C 1 -中, ∠ B A C = 90 ° , A B = A C = 2 , A 1 A = 4 , A 1 在底面 A B C 的射影为 B C 的中点, D 为 B 1 C 1 的中点.
(1)证明: A 1 D ⊥ 平面 A 1 B C ; (2)求二面角 A 1 - B D - B 1 的平面角的余弦值.
在 △ A B C 中,内角 A , B , C 所对的边分别为 a , b , c ,已知 A = π 4 , b 2 - a 2 = 1 2 c 2 .
(1)求 tan C 的值; (2)若 △ A B C 的面积为 7 ,求 b 的值.