如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。
已知数列的前项和,.(Ⅰ)求证:数列是等差数列;(Ⅱ)若,求数列的前项和.
已知函数,且其图象的相邻对称轴间的距离为.(I)求在区间上的值域;(II)在锐角中,若求的面积.
已知函数(其中是实数).(Ⅰ)求的单调区间;(Ⅱ)若,且有两个极值点,求的取值范围.(其中是自然对数的底数)
已知椭圆的焦点为,,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)设过的直线与椭圆交于、两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.
已知在长方体中,点为棱上任意一点,,.(Ⅰ)求证:平面平面;(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.