如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。
设圆为坐标原点(I)若直线过点,且圆心到直线的距离等于1,求直线的方程;(II)已知定点,若是圆上的一个动点,点满足,求动点的轨迹方程。
如图,为正方形所在平面外一点平面,且分别是线段的中点。w. (I)求证:平面;(II)求证:平面平面;(III)求异面直线与所成角的大小。
已知直线经过点。(I)求的值;(II)若直线过点且,求直线的方程。
如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.求正切值;
已知数列的前n项和为,点在直线上.数列满足: ,且,前9项和为153.求数列{bn}的通项公式;