(本小题满分12分)已知函数(1)若在点处的切线与直线垂直,求的值;(2)当时,求函数的单调递增区间
(本小题满分13分)设数列的前项和为,且;数列为等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)若为数列的前项和,求.
(本小题满分13分)设函数.(Ⅰ)求函数的单调区间;(Ⅱ)若常数,求不等式的解集.
(本小题满分13分)已知的角、、所对的边分别是、、,设向量,,.(Ⅰ)若,求证:为等腰三角形;(Ⅱ)若,边长,角,求的面积.
已知直线与函数、的图象都相切,且与函数的图象的切点的横坐标为1.(1)求直线的方程和的值; (2)若,求函数的最大值;(3)当时,求证:
设是由满足下列两个条件的函数构成的集合:①方程 有实根; ②函数的导函数满足(1)判断函数是不是集合中的元素,并说明理由;(2)若集合的元素具有以下性质:“设的定义域为,对于任意都存在使得等式成立.”试用这一性质证明:方程只有一个实数根;(3设是方程的实根,求证:对函数定义域中任意,,当,且时, .