(本小题满分14分)在平面直角坐标系中,N为圆C:上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且.(Ⅰ)求动点P表示的曲线E的方程;(Ⅱ)若曲线E与x轴的交点为,当动点P与A,B不重合时,设直线与的斜率分别为,证明:为定值;
已知直线,(1)系数为什么值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;(3)系数满足什么条件时只与x轴相交;(4)系数满足什么条件时是x轴;(5)设为直线上一点,证明:这条直线的方程可以写成.
已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.
用坐标法证明三角形的中位线长为其对应边长的一半.
判断下列A(-1,-1),B(0,1),C(1,3)三点是否共线,并给出证明.
已知点P (x, y),则求①关于y轴的对称点;②关于x轴的对称点;③关于原点的对称点;④关于直线y = x的对称点;⑤关于直线y=-x的对称点(-y, -x).