对于二次函数,(1)指出图像的开口方向、对称轴方程、顶点坐标;(2)画出它的图像,并说明其图像由的图像经过怎样平移得来;(3)求函数的最大值或最小值;(4)分析函数的单调性。
已知函数在处的切线斜率为零. (Ⅰ)求和的值; (Ⅱ)求证:在定义域内恒成立; (Ⅲ) 若函数有最小值,且,求实数的取值范围.
如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2) (Ⅰ)求证:⊥平面; (Ⅱ)求直线与平面所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万 元.两种产品生产的质量相互独立. (Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列; (Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
选修4-5:不等式选讲: 若关于的方程有实根 (Ⅰ)求实数的取值集合 (Ⅱ)若对于,不等式恒成立,求的取值范围