已知函数,。(Ⅰ)若函数的图象在x=2处的切线的斜率为1,求实数的值; (Ⅱ)若有极值,求实数的取值范围和函数的值域;(Ⅲ)在(Ⅱ)的条件下,函数,证明:,,使得成立
在四棱锥中,,,平面,直线与平面所成角为,. (1)求四棱锥的体积; (2)若为的中点,求证:平面平面.
已知函数,其中为常数. (1)求函数的周期; (2)如果的最小值为,求的值,并求此时的最大值及图象的对称轴方程.
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若,且,证明:函数必有局部对称点; (2)若函数在区间内有局部对称点,求实数的取值范围; (3)若函数在上有局部对称点,求实数的取值范围.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且. (1)求此抛物线的方程; (2)过点做直线交抛物线于两点,求证:.
如图,已知中,,,,⊥平面,,分别是,的中点. (1)求证:平面⊥平面; (2)设平面平面,求证; (3)求四棱锥的体积.