设到定点的距离和它到直线距离的比是.(Ⅰ)求点的轨迹方程;(Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.
已知的图象经过点(0,1),且在x=1处的切线方程是y=x-2。 (1)求的解析式; (2)求的单调递增区间。
已知等差数列中,,。 (1)求数列的通项公式; (2)若数列的前项和,求的值.
在△中,已知、,动点满足. (1)求动点的轨迹方程; (2)设,,过点作直线垂直于,且与直线交于点,试在轴上确定一点,使得; (3)在(II)的条件下,设点关于轴的对称点为,求的值.
已知函数,设 (1)求的单调区间; (2)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值; (3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
在直三棱柱中,,直线与平面成30°角. (I)求证:平面平面; (II)求直线与平面所成角的正弦值; (III)求二面角的平面角的余弦值.