(本小题16分) 已知抛物线的顶点在坐标原点,对称轴为 轴,焦点 在直线 上,直线 与抛物线相交于 两点, 为抛物线上一动点(不同于 ),直线 分别交该抛物线的准线 于点 。 (1)求抛物线方程; (2)求证:以 为直径的圆 经过焦点 ,且当 为抛物线的顶点时,圆 与直线 相切。
(本小题满分10分)在中,角所对的边分别是,且. (Ⅰ)求角的大小; (Ⅱ)若,,求的面积.
已知. (1)若三点共线,求实数的值; (2)证明:对任意实数,恒有 成立
(本小题满分10分)已知为正数,求证:
(本小题满分10分)已知,不等式的解集为 (1)求 (2)当时,证明:
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与轴的交点为B,且经过F1,F2点. (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.