(本小题满分16分) 已知函数,在处的 切线方程为. (1)求的解析式; (2)设,若对任意,总存在,使得 成立,求实数的取值范围.
(本小题满分12分)在数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)设,数列项和为,是否存在正整整m,使得对于恒成立,若存在,求出m的最小值,若不存在,说明理由.
(本小题满分12分)已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若(1)求角A;(2)若求△ABC的面积。
(本小题满分12分)如图,矩形ABCD,PA⊥平面ABCD,M、N、R分别是AB、PC、CD的中点。①求证:直线AR∥平面PMC;②求证:直线MN⊥直线AB。
选修4-5:不等式选讲已知函数(I)求不等式的解集;(II)若关于x的不等式恒成立,求实数的取值范围。
选修4—4:坐标系与参数方程直线(极轴与x轴的非负半轴重合,且单位长度相同)。(1)求圆心C到直线的距离;(2)若直线被圆C截的弦长为的值。