(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与、两点,以AB为底边作等腰三角形,顶点为P(-3,2) (1)求椭圆G的方程; (2)求的面积。
分别是椭圆:+=1()的左、右焦点,是椭圆的上顶点,是直线与椭圆的另一个交点,=60°. (1)求椭圆的离心率; (2)已知△的面积为40,求a, b 的值.
已知椭圆,点在椭圆上。 (1)求椭圆的离心率; (2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。
已知椭圆,直线:y=x+m (1)若与椭圆有一个公共点,求的值; (2)若与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.
设命题;命题,若是的必要不充分条件,求实数的取值范围。