已知椭圆,点在椭圆上。(1)求椭圆的离心率;(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。
已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作。 (1)已知点,线段,求; (2)设A(-1,0),B(1,0),求点集所表示图形的面积; (3)若M(0,1),O(0,0),N(2,0),画出集合所表示的图形。
把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表: 1 35 7 9 11 ……………………… …………………………… 设是位于这个三角形数表中从上往下数第行、从左往右数第个数. (1)若,求的值; (2)若记三角形数表中从上往下数第行各数的和为,求证.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC. (1)求证:AG∥平面PEC; (2)求AE的长; (3)求二面角E—PC—A的正弦值.
甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为. (1)求这一技术难题被攻克的概率; (2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。
在△ABC中,内角A,B,C所对边长分别为,,, . (1)求的最大值及的取值范围; (2)求函数的最值.