(本小题共14分)如图,在四棱锥中,底面是正方形,平面, 是中点,为线段上一点. (Ⅰ)求证:; (Ⅱ)试确定点在线段上的位置,使//平面,并说明理由.
(本小题满分12分)已知向量,设函数+1(1)若, ,求的值;(2)在△ABC中,角A,B,C的对边分别是,且满足,求的取值范围.
(本小题满分10分)设函数.(Ⅰ)求不等式的解集;(Ⅱ)若,恒成立,求实数的取值范围.
(本小题满分10分)已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点.(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
(本小题满分10分)如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MN交AD的延长线于点C,交⊙O的切线于B,BM=MN=NC=1,求AB的长和⊙O的半径.
(本小题满分12分)A﹑B﹑C是直线上的三点,向量﹑﹑满足:-[y+2]·+ln(x+1)·= ;(Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0, 证明f(x)>;(Ⅲ)当时,x及b都恒成立,求实数m的取值范围。