(本小题满分10分)已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点.(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点. (1)求椭圆的方程; (2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
如图,已知在四棱锥中,底面是矩形,平面,,,是的中点,是线段上的点. (1)当是的中点时,求证:平面; (2)要使二面角的大小为,试确定点的位置.
已知数列是公差不为0的等差数列,,且,,成等比数列. (1)求数列{an}的通项公式; (2)设,求数列的前项和。
设向量,, (1)若,求的值; (2)设函数,求的最大值。
观察以下各等式:, 分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明。