设函数.若是函数的极值点,1和是函数的两个不同零点,且,求.若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围.
已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
若不等式|3x-b|<4的解集中整数有且只有1,2,3,求实数b的取值范围.
解不等式:|x-1|>.
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.
已知实数x、y满足:|x+y|<,|2x-y|<.求证:|y|<.