(本小题满分13分)在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上.(Ⅰ)求数列{ a n }的通项公式;(Ⅱ)若bn=log2 an,求数列的前n项和Tn.
设向量a=(sin x,sin x),b="(cos" x,sin x),x∈.(1)若|a|=|b|,求x的值;(2)设函数f(x)=a·b,求f(x)的最大值.
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC⊥平面ABC;(2)求BF与平面ABC所成角的正弦值;(3)求二面角B-EF-A的余弦值.
如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.
三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.(1)求直线DB1与平面A1C1D所成角的正弦值;(2)求二面角B1-A1D-C1的正弦值.
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.(1)求二面角D1-AE-C的大小;(2)求证:直线BF∥平面AD1E.