已知函数.(1)求函数的单调区间;(2)当时,(I)已知函数的图象与函数的图象关于直线对称.证明当时,;(II)如果,且,证明.
(本小题满分13分)已知圆.(Ⅰ)写出圆C的标准方程, 并指出圆心坐标和半径大小; (Ⅱ)是否存在斜率为的直线m, 使m被圆C截得的弦为AB, 且(为坐标原点).若存在, 求出直线m的方程; 若不存在,说明理由.
(本小题满分14分)已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形, AC∩BD="O," AA1=2, BD⊥A1A, ∠BAD=∠A1AC="60°," 点M是棱AA1的中点.(Ⅰ)求证:A1C∥平面BMD; (Ⅱ)求证:A1O⊥平面ABCD; (Ⅲ)求三棱锥的体积.
(本小题满分13分)三棱锥P-DEF中, 顶点P在平面DEF上的射影为O.(Ⅰ)如果PE=PF=PD, 证明O是三角形DEF的外心(外接圆的圆心)(Ⅱ)如果, , , ,证明: O是三角形DEF的垂心(三条高的交点)
(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.(Ⅰ)如果乙组同学投篮命中次数的平均数为, 求及乙组同学投篮命中次数的方差; (Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.
(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.根据直方图估计:(Ⅰ)该公司月收入在1000元到1500元之间的人数; (Ⅱ)该公司员工的月平均收入; (Ⅲ)该公司员工收入的众数; (Ⅳ)该公司员工月收入的中位数;