(本小题满分14分)在三角形中,、、的对边分别为、、,若(Ⅰ)求的大小。(Ⅱ)若、,求三角形的面积.
(本小题满分8分) 现有名男生、名女生站成一排照相.(用数字作答) (Ⅰ) 两女生要在两端,有多少种不同的站法? (Ⅱ)两名女生不相邻,有多少种不同的站法? (Ⅲ)女生甲不在左端,女生乙不在右端,有多少种不同的站法? (Ⅳ)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(本小题满分8分) 从名男生和名女生中任选人参加演讲比赛.设随机变量表示所选人中女生的人数. (Ⅰ) 求的分布列;(结果用数字表示) (Ⅱ)求的数学期望.
(本小题12分) 命题; 命题是增函数,求实数的取值范围
(本小题满分14分) 如图,线段MN的两个端点M.N分别在x轴.y 轴上滑动,,点P是线段MN上一点,且,点P随线段MN的运动而变化. (1)求点P的轨迹C的方程; (2)过点(2,0)作直线,与曲线C交于A.B两点,O是坐标原点,设是否存在这样的直线,使四边形的对角线相等(即)?若存在,求出直线的方程;若不存在,试说明理由.
(本小题12分) 在平面直角坐标系中,直线与抛物线相交于.两点。 (1)求证:“如果直线过点,那么”是真命题。 (2)写出(1)中命题的逆命题(直线与抛物线相交于.两点为大前提),判断它是真命题还是假命题,如果是真命题,写出证明过程;如果是假命题,举出反例说明