设集合W是满足下列两个条件的无穷数列{an}的集合:① ②,其中n∈N*,M是与n无关的常数 (1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系; (2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值; (3)在(2)的条件下,设,求证:数列{Cn}中任意不同的三项都不能成为等比数列.
如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为,A、B为直线a上两定点,且|AB|=2p,MN是在直线b上滑动的长度为2p的线段。 (1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E; (2)接上问,当△AMN的外心C在E上什么位置时,d+|BC|最小,最小值是多少?(其中d是外心C到直线c的距离).
已知函数 f x = x 3 + 2 b x 2 + c x - 2 的图象在与 x 轴交点处的切线方程是 y = 5 x - 10 . (I)求函数 f x 的解析式; (II)设函数 g x = f x + 1 3 m x ,若 g x 的极值存在,求实数 m 的取值范围以及函数 g x 取得极值时对应的自变量 x 的值.
设A、B是双曲线x2–=1上的两点,点N(1,2)是线段AB的中点. (1)求直线AB的方程; (2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知函数f(x)=a1x+a2x2+a3x3+…+anxn,n∈N*且a1、a2、a3、……、an构成一个数列{an},满足f(1)=n2. (1)求数列{an}的通项公式,并求; (2)证明0<f()<1.
已知f(x)=lg(x+1),g(x)=2lg(2x+t),(t∈R是参数). (1)当t=–1时,解不等式f(x)≤g(x); (2)如果x∈[0,1]时,f(x)≤g(x)恒成立,求参数t的取值范围.