设集合W是满足下列两个条件的无穷数列{an}的集合:① ②,其中n∈N*,M是与n无关的常数 (1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系; (2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值; (3)在(2)的条件下,设,求证:数列{Cn}中任意不同的三项都不能成为等比数列.
阅读: 已知、,,求的最小值. 解法如下:, 当且仅当,即时取到等号, 则的最小值为. 应用上述解法,求解下列问题: (1)已知,,求的最小值; (2)已知,求函数的最小值; (3)已知正数、、,, 求证:.
如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为. (1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置. (2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.
已知椭圆,、是椭圆的左右焦点,且椭圆经过点. (1)求该椭圆方程; (2)过点且倾斜角等于的直线,交椭圆于、两点,求的面积.
如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,. (1)求直四棱柱的侧面积和体积; (2)求证:平面.