甲打靶射击,有4发子弹,其中有一发是空弹(1)求空弹出现在第一枪的概率;(2)求空弹出现在前三枪的概率;(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔P、Q、R(如图),第四枪瞄准了三角形PQR射击,第四个弹孔落在三角形PQR内,求第四个弹孔与前三个弹孔的距离都超过1的概率(忽略弹孔大小).
.(本小题满分14分)已知单调递增的等比数列满足:;(1)求数列的通项公式;(2)若,数列的前n项和为,求成立的正整数 n的最小值.
(本小题满分14分)在△ABC中,分别为角A、B、C的对边,, ="3," △ABC的面积为6.⑴ 角A的正弦值; ⑵求边b、c.
设函数其中为常数.(Ⅰ)若函数有极值点,求的取值范围及的极值点;(Ⅱ)证明:对任意不小于3的正整数,不等式都成立.
.已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)求的面积S的取值范围.
.如图1,直角梯形ABCD中,,E,F分别为边AD和BC上的点,且EF//AB,AD=2AE=2AB=4FC=4将四边形EFCD沿EF折起(如图2),使AD=AE.(Ⅰ)求证:BC//平面DAE;(Ⅱ)求四棱锥D—AEFB的体积;(Ⅲ)求面CBD与面DAE所成锐二面角的余弦值.