为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户每月不超过5吨的部分,自来水公司按每吨2元收费;超过5吨部分,按每吨2.6元收费.设某用户月用水量为x吨,自来水公司应收水费y元.(1)试写出y(元)与x(吨)之间的函数关系式;(2)该用户今年5月份的用水量为8吨,自来水公司应收水费多少元?
已知抛物线y=a(x+4)2+4(a≠0)经过点(2,-2)。 (1)求a的值; (2)若点A(x1,y1),B(x2,y2)(x1<x2<-4)都在该抛物线上,试比较y1与y2的大小。
(本题14分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA. (1)请用含t的代数式表示出点D的坐标; (2)求t为何值时,△DPA的面积最大,最大为多少? (3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由; (4)请直接写出随着点P的运动,点D运动路线的长.
(本题12分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E. (1)求证:AB=AC; (2)求证:DE为⊙O的切线.
(本题10分)如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). (1)求这两个函数的表达式; (2)请直接写出当x取何值时,.
(本题10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1). (1)作出与△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标; (2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,并写出点A2的坐标.