如图,一渔船自西向东追赶鱼群,在 A 处测得某无名小岛 C 在北偏东 60 ° 方向上,前进2海里到达 B 点,此时测得无名小岛 C 在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 )
【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形 ABCD 中, AB = 5 , BC = 6 , CD = 4 ,连接 AC .若 AC = AB ,求 sin ∠ CAD 的值;
(2)如图②,凸四边形 ABCD 中, AD = BD , AD ⊥ BD ,当 2 C D 2 + C B 2 = C A 2 时,判断四边形 ABCD 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 A ( - 1 , 0 ) , B ( 3 , 0 ) , C ( 1 , 2 ) ,四边形 ABCD 是对余四边形,点 E 在对余线 BD 上,且位于 ΔABC 内部, ∠ AEC = 90 ° + ∠ ABC .设 AE BE = u ,点 D 的纵坐标为 t ,请直接写出 u 关于 t 的函数解析式.
已知抛物线 y = a x 2 + bx + c 经过 A ( 2 , 0 ) , B ( 3 n - 4 , y 1 ) , C ( 5 n + 6 , y 2 ) 三点,对称轴是直线 x = 1 .关于 x 的方程 a x 2 + bx + c = x 有两个相等的实数根.
(1)求抛物线的解析式;
(2)若 n < - 5 ,试比较 y 1 与 y 2 的大小;
(3)若 B , C 两点在直线 x = 1 的两侧,且 y 1 > y 2 ,求 n 的取值范围.
矩形 ABCD 中, AB = 8 , AD = 12 .将矩形折叠,使点 A 落在点 P 处,折痕为 DE .
(1)如图①,若点 P 恰好在边 BC 上,连接 AP ,求 AP DE 的值;
(2)如图②,若 E 是 AB 的中点, EP 的延长线交 BC 于点 F ,求 BF 的长.
某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.
请用所学概率知识解决下列问题:
(1)写出这三辆车按先后顺序出发的所有可能结果;
(2)两人中,谁乘坐到甲车的可能性大?请说明理由.
为了解全校学生对"垃圾分类"知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对"垃圾分类"知识的掌握情况分成四个等级: A 表示"优秀", B 表示"良好", C 表示"合格", D 表示"不合格".第一小组认为,八年级学生对"垃圾分类"知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.
第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.
两个小组的调查结果如图的图表所示:
第二小组统计表
等级
人数
百分比
A
17
18 . 9 %
B
38
42 . 2 %
C
28
31 . 1 %
D
7
7 . 8 %
合计
90
100 %
若该校共有1000名学生,试根据以上信息解答下列问题:
(1)第 小组的调查结果比较合理,用这个结果估计该校学生对"垃圾分类"知识掌握情况达到合格以上(含合格)的共约 人;
(2)对这两个小组的调查统计方法各提一条改进建议.