设不等式x2+y2£ 4确定的平面区域为U,ïxï+ïyï£ 1确定的平面区域为V. (1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率; (2)在区域U内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望EX.
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
已知矩阵M=,向量α=,β=.(1)求向量3α+β在TM作用下的象;(2)求向量4Mα-5Mβ.
如图所示,四边形ABCD和四边形AB′C′D分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD变成四边形AB′C′D的变换矩阵M.
在线性变换=下,直线x+y=k(k为常数)上的所有点都变为一个点,求此点坐标.
已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l′:x+by=1.(1)求实数a、b的值;(2)若点P(x0,y0)在直线l上,且A=,求点P的坐标.