(本小题共4分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子.(写出一种即可).
观察下列等式:,,,将以上三个等式相加得:1-+-+-=1-=。 (1)猜想并写出:=. (2)直接写出结果:+…+.
.有理数a、b所表示的点在数轴上的位置如图所示,请在数轴上标出它们的相反数,并将这四个数及0按从小到大的顺序用“<”连接起来.
.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米): +15,-4,+13,―10,―12,+3,―13,―17 (1)最后一名老师送到目的地时,小王距出车地点的距离是多少? (2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
(本小题满分12分)如图,抛物线y=Ax2+C(A≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N. (1)求此抛物线的表达式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数.
(本小题满分12分)对于二次函数y=x²-3x+2和一次函数y=-2x+4,把y=t(x²-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务: 【尝试】 (1)当t=2时,抛物线y=t(x²-3x+2)+(1-t)(-2x+4)的顶点坐标为 ; (2)判断点A是否在抛物线L上; (3)求n的值; 【发现】 通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 . 【应用】 二次函数是二次函数y=x²-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由