.(本小题满分14分)已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动点。(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点,使得为定值?,若存在,求出的坐标,若不存在,说明理由。(Ⅲ)若在第一象限,且点关于原点对称,点在轴上的射影为,连接 并延长交椭圆于点,证明:;
(本小题12分)如图,在底面半径为3,母线长为5的圆锥中内接一个高为的圆柱. (1)求圆锥的体积. (2)当为何值时,圆柱的表面积最大,并求出最大值.
(本小题12分)设直线的方程. (1)若在两坐标轴上截距相等,求的一般式方程. (2)若不经过第二象限,求实数的取值范围.
(本小题12分)已知两条直线,,当为何值时直线与分别有下列关系? (1) ⊥; (2)∥
(本小题10分)已知的三个顶点、、,求 (1)边所在直线的一般式方程. (2)边上的高所在的直线的一般式方程.
已知函数在上为增函数,函数在上为减函数. (1)分别求出函数和的导函数; (2)求实数的值; (3)求证:当时,