(本小题满分12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1) 求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标为b. 记事件A表示“a+b=2”,求事件A的概率.
(本小题满分12分)设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p 的最小值. (3)证明不等式:
(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为. (1)求椭圆的标准方程; (2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
(本小题满分12分)某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示. (1)分别求第3,4,5组的频率; (2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试。 (ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率; (ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
(本小题满分12分)如图,在直棱柱,,。 (Ⅰ)证明:; (Ⅱ)求直线所成角的正弦值。
(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M. (1)求f(x)的解析式; (2)求函数y=f(x)+f的最大值及对应x的值.