己知,其中常数.(1)当时,求函数的极值;(2)若函数有两个零点,求证:; (3)求证:.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求四棱锥的体积.
(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
【原创】(本小题满分12分)已知. (Ⅰ)求函数的最小正周期和对称中心; (Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
(本小题满分7分)选修4—5:不等式选讲 已知函数,, 若恒成立,实数的最大值为. (Ⅰ)求实数. (Ⅱ)已知实数满足且的最大值是,求的值.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆的极坐标方程; (Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.