如图,椭圆的离心率为,是其左右顶点,是椭圆上位于轴两侧的点(点在轴上方),且四边形面积的最大值为4.(1)求椭圆方程;(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.
设函数(为常数,其中e是自然对数的底数)(Ⅰ)当时,求函数的极值点;(Ⅱ)若函数在内存在两个极值点,求的取值范围.
设且,已知函数是奇函数(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间;(Ⅲ)当时,函数的值域为,求实数的值.
已知函数.(Ⅰ)求在区间上的最大值;(Ⅱ)若过点存在条直线与曲线相切,求的取值范围.
设命题:函数的定义域为;命题:不等式对一切均成立。(Ⅰ)如果是真命题,求实数的取值范围;(Ⅱ)如果命题“或”为真命题,且“且”为假命题,求实数的取值范围.
(本小题满分14分) 已知函数(Ⅰ)若a=2,求曲线y=f(x)在点x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设,若对任意,总存在,使得,求a的取值范围.