(本小题满分16分)已知椭圆中心为,右顶点为,过定点作直线交椭圆于、两点.(1)若直线与轴垂直,求三角形面积的最大值;(2)若,直线的斜率为,求证:;(3)在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小.
已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.
设、分别为不等边的重心与外心、且平行于 轴 (1)求点的轨迹的方程 (2)是否存在直线过点并与曲线交于、两点且以为直径的 圆过坐标原点若存在求出直线的方程若不存在请说明理由