(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,曲线C1 (t为参数),曲线.(Ⅰ)写出C1与C2的普通方程;(Ⅱ)过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
(本小题满分10分)若二进制数100011和八进制数03相等,求的值。
(本小题满分12分)已知函数.(1)当时,求函数的单调区间;(2)设,且函数在点处的切线为,直线//,且在轴上的截距为1.求证:无论取任何实数,函数的图象恒在直线的下方.
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是(1)分别求出小球落入袋和袋中的概率;(2)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
(本小题满分12分)在数列中,,且,(1)求的值;(2)归纳的通项公式,并用数学归纳法证明.
(本小题满分12分)两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?