圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
.(12分)如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.
(1)已知是奇函数,求常数的值;(2)画出函数的图象,并利用图象回答:为何值时,方程||=无解?有一解?有两解?
.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求(1)BC边上的中线AD所在的直线方程;(2)△ABC的面积。
求与圆外切且与直线相切于点的圆的方程.
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据:⑴求这个组合体的表面积;⑵若组合体的底部几何体记为ABCD-A1B1C1D1,如图,其中A1B1BA为正方形. ①求证:A1B⊥平面AB1C1D;②若P为棱A1B1上一点,求AP+PC1的最小值.