已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF. (1)如图1, 当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).
如图,谢明住在一栋住宅楼AC上,他在家里的窗口点B处,看楼下一条公路的两侧点F和点E处(公路的宽为EF),测得俯角、分别为30°和60°,点F、E、C在同一直线上. (1)请你在图中画出俯角和. (2)若谢明家窗口到地面的距离BC=6米,求公路宽EF是多少米?(结果精确到0.1米;可能用到的数据)
甲、乙两名同学玩抽纸牌比大小的游戏,规则是:“甲将同一副牌中正面分别标有数字1,3,6的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;乙将同一副牌中正面分别标有数字2,3,4的三张牌洗匀后,背面朝上放置在桌面上,随机抽一次且一次只抽一张,记下数字;若甲同学抽得的数字比乙同学抽得的数字大,甲获胜,反之乙获胜,若数字相同,视为平局.” (1)请用画树状图或列表的方法计算出平局的概率;(2)说明这个规则对甲、乙双方是否公平.
一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行复原,因此把残片抽象成了一个弓形,如图所示,经过测量得到弓形高CD=米,∠CAD=30°,请你帮助文物学家完成下面两项工作: (1)作出此文物轮廓圆心O的位置(尺规作图,保留作图痕迹,不写作法); (2)求出弓形所在圆的半径.
如图,在四边形ABCD中,∠C=60º,∠B=∠D=90º,AD=2AB,CD=3,求BC的长.
已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.