如图,抛物线,与轴交于点,且.(1)求抛物线的解析式;(2)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形?若存在,求出点坐标,若不存在,请说明理由;(3)直线交轴于点,为抛物线顶点.若,的值.
已知关于的方程. (1)试说明:无论取什么实数值,方程总有实数根; (2)若等腰的一边长为1,另两边长、恰好是这个方程的两个实数根,求的周长.
设、是方程的两个实数根,不解方程,求下列代数式的值. (1);(2)
解下列方程(每小题4分,共16分). (1); (2)(配方法) ; (3); (4)(公式法) .
随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图(1)所示;种植花卉的利润与投资量成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) (1)分别求出利润与关于投资量的函数关系式; (2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
如图,⊙O与的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知,⊙O的半径为12,弧DE的长度为. (1)求证:DE∥BC; (2)若AF=CE,求线段BC的长度.