如图,已知椭圆过点.,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.(I)求椭圆的标准方程;(II)设直线、的斜线分别为、. 证明:
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7. (Ⅰ)求这次铅球测试成绩合格的人数; (Ⅱ)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的分布列及数学期望; (Ⅲ)经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.
已知函数在处的切线与轴平行. (1)求的值和函数的单调区间; (2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.
已知函数的最小正周期为. (I)求值及的单调递增区间; (II)在△中,分别是三个内角所对边,若,,,求的大小.
已知函数. (1)求不等式的解集; (2)若关于的不等式的解集非空,求实数的取值范围.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为(为参数),直线与曲线分别交于两点. (Ⅰ)写出曲线和直线的普通方程; (Ⅱ)若成等比数列,求的值.