盒中装有个零件,其中个是使用过的,另外个未经使用.(Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取个零件,使用后放回盒中,求此时盒中使用过的零件个数为3或4概率。.
(本题12分) 如图的几何体中,平面,平面,△为等边三角形, ,为的中点. (1)求证:平面; (2)求证:平面平面; (3)求此几何体的体积。
(本题12分) 已知数列的前项和满足,等差数列满足,。 (1)求数列、的通项公式; (2)设,数列的前项和为,问>的最小正整数是多少?
(本题10分) 设三角形的内角的对边分别为,. (1)求边的长;(2)求角的大小。
(本小题满分14分) 已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、, (1)求椭圆方程; (2)求证:对任意的的允许值,的内心在定直线。
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。 (1)解关于的不等式; (2)当时,总有恒成立,求的取值范围。