设 a 1 , a 2 , a 3 , a 4 是各项为正数且公差为d ( d ≠ 0 ) 的等差数列 (1)证明: 2 a 1 , 2 a 2 , 2 a 3 , 2 a 4 依次成等比数列; (2)是否存在 a 1 , d ,使得 a 1 , a 2 2 , a 3 3 , a 4 4 依次成等比数列,并说明理由; (3)是否存在 a 1 , d 及正整数,使得 a 1 n , a 2 n + k , a 3 n + 2 k , a 4 n + 3 k 依次成等比数列,并说明理由.
某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设. (1)将五边形的面积表示为的函数; (2)当为何值时,市民健身广场的面积最大?并求出最大面积.
已知,函数. ⑴若不等式对任意恒成立,求实数的最值范围; ⑵若,且函数的定义域和值域均为,求实数的值.
(本小题满分15分)在数列中,,. (1)设.证明:数列是等差数列;(2)求数列的前项和.
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面; (2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且. (1)求角的值; (2)若角,边上的中线=,求的面积.