已知数列(常数p>0),对任意的正整数n, 并有(I)试判断数列是否是等差数列,若是,求其通项公式,若不是,说明理由;(II)令的前n项和,求证:
有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在抛物线y=x2-2x-1上的概率.
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.
如图,甲楼AB的高度为35m,经测得,甲楼的底端B处与乙楼的底端D处相距105m,从甲楼顶部A处看乙楼顶部C处的仰角∠CAE的度数为25°.求乙楼CD的高度(结果精确到0.1m).[参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47].
某校九年级(3)班的师生到距离10千米的山区植树,出发1.5小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米.求骑车与步行的速度各是多少?
先化简,再求值:,其中.