如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC;
平面直角坐标系中,为坐标原点,给定两点,点满足 ,其中,且. (1)求点的轨迹方程;(2)设点的轨迹与双曲线交于两点,且以为直径的圆过原点,求证:为定值;(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围.
关于的方程:. (1)若方程表示圆,求实数的范围;(2)在方程表示圆时,若该圆与直线相交于两点,且,求实数的值;(3)在(2)的条件下,若定点的坐标为(1,0),点是线段上的动点,求直线斜率的取值范围.
在中,角、、所对的边分别为,已知向量 ,且.(1)求角的大小; (2)若,求的最小值.
已知各项均为正数的数列的前项和满足,且.(1)求的通项公式;(2)设数列满足,并记为的前项和,比较与 的大小.
已知点A,B(5,2),线段AB上的三等分点依次为,求点的坐标以及A、B分所成的比.