已知函数,是的一个极值点.(Ⅰ)求的单调递增区间;(Ⅱ)当时,求方程的解的个数.
已知在正方体中,分别是的中点,在棱上,且. (1)求证:; (2)求二面角的大小.
在一段时间内,某种商品价格(万元)和需求量之间的一组数据为:
(1)进行相关性检验; (2)如果与之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01) 参考公式及数据:,, 相关性检验的临界值表:
在△ABC中,,记,△ABC的面积为,且满足. (1)求的取值范围; (2)求函数的最大值和最小值.
已知函数 (I) 解关于的不等式 ; (II)若函数的图象恒在函数的上方,求实数的取值范围。
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。 (I)求直线的参数方程和圆C的极坐标方程; (II)试判定直线与圆C的位置关系。