已知函数 ,. (Ⅰ)当 时,求函数 的最小值; (Ⅱ)当 时,讨论函数 的单调性; (Ⅲ)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
(本小题满分14分)已知幂函数,且在上单调递增. (1)求实数的值,并写出相应的函数的解析式; (2)若在区间上不单调,求实数的取值范围; (3)试判断是否存在正数,使函数在区间上的值域为.若存在,求出的值;若不存在,请说明理由.
某地上年度电价为元,年用电量为亿千瓦时.本年度计划将电价调至之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,. (1)求与之间的函数关系式; (2)若每千瓦时电的成本价为元,则电价调至多少时,本年度电力部门的收益将比上年增加?[收益=用电量×(实际电价-成本价)]
已知函数,若; (1)求的值;(2)求的值;(3)解不等式.
已知函数. (1)判断函数的奇偶性,并加以证明;[来(2)用定义证明函数在区间上为增函数.
计算下列各式的值: (1) (2)