(本小题满分12分)为了加快经济的发展,某市选择A、B两区作为龙头带动周边地区的发展,决定在A、B两区的周边修建城际快速通道,假设A、B两区相距个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离.(Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程;(Ⅱ)若有一条斜率为的笔直公路l与曲线E交于P,Q两点,同时在曲线E上建一个加油站M(横坐标为负值)满足,求面积的最大值.
如图,平行四边形中,,,且,正方形和平面垂直,是的中点.(1)求证:平面;(2)求证:∥平面;(3)求三棱锥的体积.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知sin2θ(1+cotθ)+cos2θ(1+tanθ)=2,θ∈(0,2π),求tanθ的值.
已知△ABC的三个内角A、B、C,求当A为何值时,取得最大值,并求出这个最大值.
已知,,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f(x)=sin(x-α)+cos(x+β)的最大值.