(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.(Ⅰ) 求曲线C2的方程;(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.
2008年北京奥运会中国跳水梦之队取得了辉煌的成绩。据科学测算,跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动轨迹(如图所示)是一经过坐标原点的抛物线(图中标出数字为已知条件),且在跳某个规定动作时,正常情况下运动员在空中的最高点距水面米,入水处距池边4米,同时运动员在距水面5米或5米以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (Ⅰ)求抛物线的解析式; (Ⅱ)某运动员按(1)中抛物线运行,要使得此次跳水成功,他在空中调整好入水姿势时,距池边的水平距离至多应为多大?
已知函数、对任意实数、都满足条件 ①,且,和②,且, (Ⅰ)求数列、的通项公式;(为正整数) (II)设,求数列的前项和。
在中,已知内角A、B、C成等差数列,边AC6。设内角,的周长为。
在中,已知,求边的长及的面积S。
某企业利用银行无息贷款,投资400万元引进一条高科技生产流水线,预计每年可获产品利润100万元。但还另需用于此流水线的保养、维修费用第一年10万元,以后每年递增5万元,问至少几年可收回该项投资?(即总利润不小于总支出)