(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.(Ⅰ) 求曲线C2的方程;(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.
已知数列的前项和,满足为常数,且,且是与的等差中项. (Ⅰ)求的通项公式; (Ⅱ)设,求数列的前项和.
(本小题满分12分)已知命题:在上定义运算:不等式对任意实数恒成立;命题:若不等式对任意的恒成立.若为假命题,为真命题,求实数的取值范围.
(本小题满分12分)已知椭圆与双曲线的焦点相同,且它们的离心率之和等于. (Ⅰ)求椭圆方程; (Ⅱ)过椭圆内一点作一条弦,使该弦被点平分,求弦所在直线方程.
(本小题满分12分)在中,角的对边分别为,已知. (Ⅰ)求角的大小; (Ⅱ)若,求△的面积.
(本小题满分12分)已知为复数,和均为实数,其中是虚数单位. (Ⅰ)求复数和; (Ⅱ)若在第四象限,求的范围.