已知函数,其图像在点处的切线为.(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;(2)求、直线及轴围成图形的面积.
已知函数.(1)求的最小正周期;(2)若将的图像向左平移个单位,得到函数的图像,求函数在区间上的最大值和最小值.
已知数列是等差数列,且是展开式的前三项的系数.(1)求展开式的中间项;(2)当时,试比较与的大小.
(本小题满分10分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取 ,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X的概率分布及数学期望.
选修4—5:不等式选讲设,求证:.
选修4—4:坐标系与参数方程已知曲线的极坐标方程为,曲线的极坐标方程为,判断两曲线的位置关系.