(本小题满分12分)某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.(I)求AB的长度;(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)当时,已知,且,求证:.
已知曲线:,曲线:.曲线的左顶点恰为曲线的左焦点. (Ⅰ)求的值; (Ⅱ)设为曲线上一点,过点作直线交曲线于两点.直线交曲线于两点.若为中点, ①求证:直线的方程为 ; ②求四边形的面积.
浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5.在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响). (Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率; (Ⅱ)求某队可获得奖品的概率.
(本小题满分12分)如图,在中,已知在上,且又平面. (Ⅰ)求证:平面; (Ⅱ)求证:⊥平面.
(本小题满分12分)在中,内角的对边分别为,已知,且成等比数列. (Ⅰ)求的值; (Ⅱ)若求的值.