口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,二张标有数字3,第一次从口袋里任里任意抽取一张,放回口袋里后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为.(1)为何值时,其发生的概率最大?说明理由; (2)求随机变量的期望.
已知函数.(1)试判断函数的单调性,并说明理由;(2)若恒成立,求实数的取值范围.
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分别为AA1、A1C的中点.(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.
甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是,乙能答对其中的道题.规定每次考试都从备选的道题中随机抽出道题进行测试,答对一题加分,答错一题(不答视为答错)减分,至少得分才能入选.(1)求甲得分的数学期望;(2)求甲、乙两人同时入选的概率.
已知公差不为0的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)试推导数列的前项和的表达式。
已知向量,,函数(1)求的单调递增区间;(2)若不等式都成立,求实数m的最大值.