某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响. 求:(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2) 试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力。
如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处沿北偏东的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度; (2)求的值.
求满足下列条件的直线方程: (1)经过点,且与直线垂直; (2) 经过点,且在两坐标轴上的截距相等.
(本小题满分14分) 已知函数,(e为自然对数的底数) (Ⅰ)当a=1时,求函数f(x)的单调区间; (Ⅱ)若函数f(x)在上无零点,求a的最小值; (III)若对任意给定的,在上总存在两个不同的,使得成立,求a的取值范围.
(本小题满分13分)若集合具有以下性质:①②若,则,且时,.则称集合是“好集”. (Ⅰ)分别判断集合,有理数集Q是否是“好集”,并说明理由; (Ⅱ)设集合是“好集”,求证:若,则; (Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由. 命题:若,则必有; 命题:若,且,则必有;
(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋. (I)根据以上数据完成以下22列联表:
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关? 参考公式:其中n=a+b+c+d 参考数据:
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又 有女的概率是多少? (Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.