已知椭圆,过点作直线与椭圆交于、两点.(1) 若点平分线段,试求直线的方程;设与满足(1)中条件的直线平行的直线与椭圆交于、两点,与椭圆交于点,与椭圆交于点,求证://
直线与圆交于、两点,记△的面积为(其中为坐标原点). (1)当,时,求的最大值; (2)当,时,求实数的值;
若,求函数的最大值和最小值;
如图5,在四棱锥中,底面为正方形,平面,,点是的中点. (1)求证://平面; (2)若四面体的体积为,求的长.
设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当时,求函数的最大值及取得最大值时的的值;
已知等差数列, (1)求的通项公式; (2)令,求数列的前项和;